Distributed Route Aggregation on the GLObal Network (DRAGON)

João Luís Sobrinho

Laurent Vanbever, Franck Le, Jennifer Rexford

ACM CoNEXT 2014, Sydney

1Instituto de Telecomunicações, 1IST Universidade de Lisboa
2ETH Zurich, 3IBM T. J. Watson Research, 4Princeton University
Last year in the news (August 2014)

Some routers could not process the +512 K IPv4 prefixes they were learning about.
Not a scalable routing system

Most of the originated prefixes are routed globally (by BGP)
Not a scalable routing system

Most of the originated prefixes are routed globally (by BGP)
Not a scalable routing system

Most of the originated prefixes are routed globally (by BGP)
No scalability: poor performance

- Forwarding tables (FIBs) growth & address look-up time increase
- Routing tables (RIBs) growth
- BGP session set-up time increase
- Churn & convergence time increase
Further scalability concerns

• IPv6 prefixes can be formed in potentially larger numbers than IPv4 prefixes

• Secure BGP adds computational overhead to routing processes
DRAGON

Distributed solution to scale the Internet routing system

Basic DRAGON: 49% savings on routing state

Full DRAGON: 79% savings on routing state

No changes to the BGP protocol
No changes to the forwarding plane

Readily implemented with updated router software
Outline

• Scalability: global view
• DRAGON: filtering strategy
• DRAGON: aggregation strategy
• DRAGON: performance evaluation
• Conclusions
Outline

• Scalability: global view
 • DRAGON: filtering strategy
 • DRAGON: aggregation strategy
 • DRAGON: performance evaluation
• Conclusions
Scalability: global view (routing)

Propagation of more specific prefixes only in a small vicinity of their origin ASs

Specificity
Prefix q is more specific than prefix p if the bits of p are the first bits of q
Scalability: global view (forwarding)

Most ASs forward data-packets on the (aggregated) less specific prefixes
Scalability: global view (forwarding)

AS 1 1.0.0.0/16

AS 2
1.0.0.0/16 origin
1.0.1.0/24

1.0.1.1

AS 3 1.0.0.0/16
1.0.1.0/24 origin

dest. addr. data-packet

Scalability: global view (forwarding)
Hope for scalability? Hierarchies

AS-hierarchy aligned with prefix hierarchy
Hope for scalability? Clustering

Geography roughly clusters together ASs with aggregatable address space

Routing Information Registry (RIR)

1.0.0.0/24
1.0.1.0/24
1.0.2.0/23
How to realize the global view through automated local routing decisions?

especially, given that the Internet routing system is as decentralized as it can be:

• each AS decides where to connect
• each AS decides where to acquire address space
• each AS sets its own routing policies
Outline

• Scalability: global view
• DRAGON: filtering strategy
• DRAGON: aggregation strategy
• DRAGON: performance evaluation
• Conclusions
Filtering strategy

• Locally filter the more specific prefixes when possible
 – no black holes
 – respect routing policies

• Use built-in incentives to filter locally
 – save on forwarding state
 – forward along best route

• Exchange routing information with standard BGP
Providers, customers, and peers

#1 — peer — #2

provider — peer — customer —

#3 — #4

#5 — #6
Prefixes

#6 originates q (1.0.0.0/24); #4 originates p (1.0.0.0/16)

q more specific than p
Routes

Route
Association between a prefix and an attribute, from a totally ordered set of attributes

q-route
(route pertaining to q)
Gao-Rexford routing policies

preferences: customer then peer then provider

exportations: all routes from customers; all routes to customers

route attributes:
- “customer”
- “peer”
- “provider”

q-route
Gao-Rexford routing policies

preferences: customer then peer then provider

exportations: all routes from customers; all routes to customers

route attributes:
“customer”
“peer”
“provider”

q-route
Gao-Rexford routing policies

preferences: customer then peer then provider

exportations: all routes from customers; all routes to customers

route attributes:
“customer”
“peer”
“provider”

q-route
Gao-Rexford routing policies

preferences: customer then peer then provider
exportations: all routes from customers; all routes to customers
Final state for prefix q

route attributes:
“customer”
“peer”
“provider”
Final state for prefixes q and p

p: peer
q: peer

p: prov.
q: cust.

p: cust.
q: cust.

p: origin
q: cust.

p: prov.
q: prov.

p: prov.
q: prov.

p: prov.
q: origin

route attributes:
“customer”
“peer”
“provider”

forwarding: longest prefix match rule
Filtering code (FC)

Other than origin of \(p \), in the presence of \(p \), filter \(q \) if only if:

attribute of \(p \)-route same or preferred to attribute of \(q \)-route

\[\sqrt{\text{ASs that filter } q \text{ upon execution of FC}} \]
AS 2 applies FC

- AS 2 saves on forwarding state
- AS 1 is oblivious of q; it saves on forwarding and routing state
All ASs apply FC

AS 1, AS 2, and AS 3 forgo \(q \) forwarding to \(q \) using less specific \(p \)
Global property: correctness

Correctness: no routing anomalies (no black holes)
Global property: route consistency

Route consistency: attribute of route used to forward data-packets is preserved
Optimal route consistency: set of ASs that forgo q is maximal
Partial deployment

p: peer
q: cust.

p: peer
q: peer

#1

#2
p: cust.
q: cust.

#3

#4
p: cust.
q: cust.

#5
p: origin
q: cust.

$#6$
p: prov.
q: origin

forwarding data-packets with destination in q

ASs that filter q upon execution of FC
Partial deployment: incentives

AS 2 (and AS 3) has a double incentive to apply the FC:
• saves on forwarding state
• improves attribute of route used to forward data-packets
Partial deployment: incentives

AS 2 applies FC

AS 2 reverts to forwarding data-packets with address in q to AS 4

forwarding data-packets with destination in q
Partial deployment: route consistency

p: peer
q: cust.

p: peer
q: peer

forwarding data-packets with destination in q
Partial deployment: route consistency

First to apply FC are ASs that elect a peer or provider q-route
Partial deployment: route consistency

Next to apply FC are ASs for which providers have already applied FC
Partial deployment: route consistency

Next to apply FC are ASs for which providers have already applied FC
Filtering strategy: general case

• Trees of prefixes learned from BGP
 – FC for a prefix in relation to the parent prefix

• Correctness
 – for the routing policies for which BGP is correct

• Route consistency (optimal and through partial deployment)
 – for \textit{isotone} routing policies (includes Gao-Rexford)

\textbf{Optimal route consistency is not synonymous with \textit{efficiency} (think shortest paths)}
Outline

• Scalability: global view
• DRAGON: filtering strategy
• DRAGON: aggregation strategy
• DRAGON: performance evaluation
• Conclusions
Aggregation strategy

• Locally originate aggregation prefixes when beneficial
 – new address space is *not* created
 – allow filtering of provider-independent prefixes
 – self-organization when more than one AS originates the same aggregation prefix

• *Again, exchange routing information with standard BGP*
Aggregation prefix

1. no routable address space is created
2. at least two covered prefixes
3. customer route is elected for each of the covered prefixes

$p0 + p10 + p11 = p$; p is an aggregation prefix at AS 3
AS 3 originates \(p \)

- \(p: \) cust.
- 0: cust.
- 10: cust.
- 11: cust.

AS 2 filters \(p0, p10, \) and \(p11 \)

AS 1 is oblivious of \(p0, p10, \) and \(p11 \)

AS 4 filters \(p10 \) and \(p11 \)

AS 5 filters \(p0 \) and \(p11 \)

AS 6 filters \(p0 \) and \(p10 \)
Aggregation strategy: general case

• Trees of prefixes learned from BGP
 – aggregation prefixes cover parentless prefixes

• Self-organization
 – for the routing policies for which BGP is correct

• Optimal origins
 – for isotone routing policies (includes Gao-Rexford)
Outline

• Scalability: global view
• DRAGON: filtering strategy
• DRAGON: aggregation strategy
• DRAGON: performance evaluation
• Conclusions
Data-sets

• Annotated topology (CAIDA, Feb. 2015)
 – ~50K ASs; ~42K stub ASs
 – ~94K provider links; ~94K customer links; 180K peer links

• IPv4-prefixes-to-ASs mapping (CAIDA, Feb. 2015)
 – ~530K prefixes
 – ~270K parentless prefixes
 – ~210K prefixes have same origin AS as parent
FIB filtering efficiency: definition

Normalized amount of reduction brought by DRAGON to the forwarding tables of an AS

\[
\text{FilterEff} = \frac{\# \text{ (FIB entries BGP)} - \# \text{ (FIB entries DRAGON)}}{\# \text{ (FIB entries BGP)}}
\]
FIB filtering efficiency: results

<table>
<thead>
<tr>
<th></th>
<th>Basic DRAGON</th>
<th>Full DRAGON</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>filtering</td>
<td>filtering & aggregation</td>
</tr>
<tr>
<td>Min. FilterEff</td>
<td>47%</td>
<td></td>
</tr>
<tr>
<td>% of ASs with at least Min. FilterEff</td>
<td>100%</td>
<td></td>
</tr>
<tr>
<td>Max. FilterEff</td>
<td>49%</td>
<td></td>
</tr>
<tr>
<td>% of ASs attaining Max. FilterEff</td>
<td>87%</td>
<td></td>
</tr>
</tbody>
</table>
FIB filtering efficiency: results

<table>
<thead>
<tr>
<th></th>
<th>Basic DRAGON</th>
<th>Full DRAGON</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>filtering</td>
<td>filtering & aggregation</td>
</tr>
<tr>
<td>Min. FilterEff</td>
<td>47%</td>
<td>69%</td>
</tr>
<tr>
<td>% of ASs with at least Min. FilterEff</td>
<td>100%</td>
<td>100%</td>
</tr>
<tr>
<td>Max. FilterEff</td>
<td>49%</td>
<td>79%</td>
</tr>
<tr>
<td>% of ASs attaining Max. FilterEff</td>
<td>87%</td>
<td>87%</td>
</tr>
</tbody>
</table>
Outline

• Scalability: global view
• DRAGON: filtering strategy
• DRAGON: aggregation strategy
• DRAGON: performance evaluation
• Conclusions
Conclusions

• DRAGON is a BGP add-on to scale the Internet routing system

• DRAGON can be deployed incrementally

• DRAGON reduces the amount of forwarding state by approximately 80%

• DRAGON is – more fundamentally – a solid framework to reason about route aggregation
Visit us at

www.route-aggregation.net

Thank you!